EAST BAY MUNICIPAL UTILITY DISTRICT

8 EBMUA

Water-Energy Nexus:

Strategies and Initiatives

BayREN Water-Energy Nexus Forum July 29, 2014

Climate Assessments

- Projected Climate
 Change Impacts
 - Water Resources
 - Water Quality
 - Energy
- California AB32 –
 Global Warming
 Solutions Act

Climate Change Impacts

Atmospheric CO₂ Since 1950's

As atmospheric GHG concentrations rise

- Average global temperature will rise
- · Sea level will rise
- Precipitation patterns will change

Atmospheric CO₂ over the last 800,000 years

surface than any preceding decade since 1850

•

- In the Northern Hemisphere, **1983 to 2012** was likely the **warmest 30-year period** in the last 1400 years
- Rate of increase since 1970 (compared to 1880) 2.5 times higher (increase from 0.2°F to 0.5°F per decade)

Source: IPCC AR5

Projected Temperature Change

Source: IPCC AR5 and 2014 National Climate Assessment

Source: 2014 National Climate Assessment

EBMUD Energy Strategy

- · Minimize energy use
- Minimize energy costs
- Diversify our energy supplies
- Educate our employees and customers

District Power Purchases

- 148,000 MWh in FY2013
- Purchased from
 - PG&E
 - SMUD
 - WAPA
- Self-Supply

Sector	%
Water Treatment	11%
Distribution Pumping	44%
Admin/Raw Water Pumping	11%
Wastewater	34%

- Each year water-related energy use in California consumes
 - 19% of the state's electricity (48,000 GWh)
 - 30% of its natural gas
 - 88 million gallons of diesel fuel
- Of the 19% electricity use
 - 4% used by water utilities
 - 1% used by wastewater utilities
 - 14% used by end users
- Energy use during droughts increases as other supplies are utilized

Energy Use in Perspective

60 watt light bulb for 8 hours = Walking for 82 days

Dell GX280 for 8 hours = Walking for 246 days

UC Davis Study Project Goals

- Estimate energy intensity (EI) of water
- No one-size-fits all El number that can be given a gallon of water

 Need to consider seasonal and spatial effects on energy

Spatial Variation in Energy Intensity

Size of the bubbles = relative water consumption by zone

Benefits

- Developed characterization of when and where energy is being used
- Map of energy intensity enables intelligently targeted conservation efforts and infrastructure upgrades
- Set realistic targets for energy and water conservation
- Enable energy efficiency programs through water conservation

Less Water = Less Energy

- Promote water conservation
- Demand Management
 - Home surveys and rebates
 - Education and information
 - New service regulations
 - Research on technology

Steamer Field Study Cost Comparison

Steamer Type	Boilerless Steamer (single compartments)	Boiler-Based Steamer (single compartments)		
Annual Energy	\$912	\$4,822		
Annual Water	\$33	\$979		
Total Costs	\$945	\$5,801		
Savings	\$4,856			

Based on monitoring 12 steamers with an average daily use of 6.5 hours 360 days/yr operation at \$0.13/kWh & \$5.00/100 cu.ft. water/sewer

A Multi-Scalar Approach

- · Infrastructure-wide
 - SCADA system data
 - Asset data
 - Energy data
 - Four Pressure Zones
 - Water meter data
 - Energy meter data

Advanced Metering Infrastructure Projects

Website Features	Blackhawk	Reliez				
Historical Use	Previous 10-years	NA				
Water Use Data	Yearly, monthly, daily, hourly					
Data Units	Billing units, cubic feet, gallons, dollars					
Customized Alerts	Potential leaks, daily water budget					
Notifications	Email, telephone, postcards					
Customer Reports	Graphical and Excel					
Admin. Reports	Aggregate consumption, leakage, demand profiles					

Blackhawk: Aggregate Hourly Consumption Profile

Blackhawk: Automated Reading and Billing Statistics

>35,000 billing reads October 2011- June 2013

>18 million hourly reads that customer have access to for 2013

>100 million hours of consumption data available to conservation staff since 2009

Unmeasured Flow Study

Unmeasured Flow Study

- Replaced approximately 500 meters with Sensus Iperl Mag Meters
- Over 200 pulled meters tested down to 1/32nd gpm
- · Iperl Meters remain accurate at 1/37 gpm
- Meter Resolution is 0.001 CF or about 1 ounce of water
- Datalogging at 1 minute intervals
- · 60 million meter reads!

Unmeasured Flow Study Preliminary Results

Flowrate	15	5	2	1	1/2	1/4	1/8	1/16	1/32
% Accuracy	98.2	98.9	99.2	98.1	93.9	86.8	68.7	49.9	19.2

Water Balance - Leak Detection

Concept: Real-time, spatially derived water balances to enhance system wide leak detection

Impact: Accelerate leak detection to reduce water loss an minimize potential pipe damage and service interruption.

Pressure Zone Balancing

GPM

Hours

Seasonal Use by Customer Category

FIGURE 6-4 MONTHLY WATER USE BY CUSTOMER CATEGORY 250 AVERAGE DAILY WATER CONSUMPTION (MGD) 200 150 TOTAL METERED USE 100 SINGLE-FAMILY COMMERCIAL, INDUSTRIAL, 50 INSTITUTIONAL MULTI-FAMILY IRRIGATION F Μ А Μ А S 0 Ν D NOTES:

1. Based on Calendar Year 1975-2010 consumption data.

2. Total metered use includes water, fire and hydrant use by all customer categories, including petroleum.

How do we size new facilities?

- Statistical analysis of <u>historical</u> peaking factors (peak day/average annual) to determine 1 in 20 year return period (maximum day demand)
- Apply peaking factor to <u>projected</u> future demands from 2040 Demand Study
- · Apply Engineering Standard Practice sizing criteria
 - Pumping Plants: 1.5 X Maximum Day Demand
 - Reservoirs: 1.0 X Maximum Day Demand
 - Water Treatment Plants: 1.0 X Maximum Day Demand
 - Pipelines not straightforward (based on level of service) but are influenced by Maximum Day Demand

Water Conservation: Why does it matter?

- 44 MGD Districtwide Average Annual Conservation
- 1.59 Districtwide Maximum Day Demand Peaking Factor
- 70 MG Storage, 70 MGD Water Treatment Plant, 105 MGD Pumping Plant, and ??? Pipeline Capacity
- Expand Sobrante WTP Capacity by 25 mgd (55 mgd to 80 mgd)
 - Capital Cost Estimate (2007) = \$72.6M (~\$2.9M/MGD)
- New Wildcat PP at 32 mgd
 - Capital Cost Estimate (2007) = \$9.9M (~\$3.1M/MGD)
- New Highland Reservoir at 2.7 MG
 - Contract* Cost (2010) \$5.7M (~\$2.1/MG)

Historical Maximum Day Demand Peaking Factors

West of Hills & East of Hills Gross Demand Peaking Factors (Maximum Day Demand/Average Annual Demand)

Frequency of High Demand Day Factors

Districtwide Gross Demand Peak Demands/Average Annual Demand EBMUD

1997-2007

Home Water Report Pilot Study Participants

City	No. of Participants	Control Group	Total	
Castro Valley, CA	8,000	-	8,000	
Oakland, CA	-	3,500	3,500	
Random	1,500	1,500	3,000	
Total	9,500	4,000	14,500	

EBMUD-PG&E Joint Water-Energy Report Pilot Proposal

- Evaluate parcel-level energy savings achieved through water reports
- Estimate system-level energy savings achieved through water reports (embedded energy)
- Develop template for combined water-energy report
- Test combined report format with focus group
- PG&E funding through *Emerging Technologies* program w/potential for future resource programs

Concept: Integrating existing data and enhanced analytics to design and demonstrate cloud computing

Impact: Deeper energy & water savings, better monitoring & performance verification, and new revenue streams

W-E Challenges & Opportunites

Challenges

- Need additional water and energy use data
- Need new methodologies to address efficiency gains and GHG/carbon credits and avoid double counting
- · Differential in water and energy costs and ROI

Opportunities

- · Advance utility, market and consumer awareness
- Improve and expand on W/E data collection and metrics
- Analyze and promote incentive funding for cold and hot water efficiency programs that save energy
- Expand public-private efficiency partnerships

